Groups with one conjugacy class of non-normal subgroups‎ - ‎a short proof

author

  • H. Mousavi Department of Mathematics, University of Tabriz, P.O.Box 51666-17766, Tabriz‎, ‎Iran
Abstract:

For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

groups with one conjugacy class of non-normal subgroups‎ - ‎a short proof

for a finite group $g$ let $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$. we give a short proof of a theorem of brandl, which classifies finite groups with $nu(g)=1$.

full text

Nilpotent groups with three conjugacy classes of non-normal subgroups

‎Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$‎. ‎In this paper‎, ‎all nilpotent groups $G$ with $nu(G)=3$ are classified‎.  

full text

nilpotent groups with three conjugacy classes of non-normal subgroups

‎let $g$ be a finite group and $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$‎. ‎in this paper‎, ‎all nilpotent groups $g$ with $nu(g)=3$ are classified‎.

full text

Conjugacy in Normal Subgroups of Hyperbolic Groups

Let N be a finitely generated normal subgroup of a Gromov hyperbolic group G. We establish criteria for N to have solvable conjugacy problem and be conjugacy separable in terms of the corresponding properties of G/N . We show that the hyperbolic group from F. Haglund’s and D. Wise’s version of Rips’s construction is hereditarily conjugacy separable. We then use this construction to produce firs...

full text

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

full text

non-nilpotent groups with three conjugacy classes of non-normal subgroups

‎for a finite group $g$ let $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$‎. ‎the aim of this paper is to classify all the non-nilpotent groups with $nu(g)=3$‎.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 41  issue 6

pages  1493- 1495

publication date 2015-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023