Groups with one conjugacy class of non-normal subgroups - a short proof
author
Abstract:
For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.
similar resources
groups with one conjugacy class of non-normal subgroups - a short proof
for a finite group $g$ let $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$. we give a short proof of a theorem of brandl, which classifies finite groups with $nu(g)=1$.
full textNilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
full textnilpotent groups with three conjugacy classes of non-normal subgroups
let $g$ be a finite group and $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$. in this paper, all nilpotent groups $g$ with $nu(g)=3$ are classified.
full textConjugacy in Normal Subgroups of Hyperbolic Groups
Let N be a finitely generated normal subgroup of a Gromov hyperbolic group G. We establish criteria for N to have solvable conjugacy problem and be conjugacy separable in terms of the corresponding properties of G/N . We show that the hyperbolic group from F. Haglund’s and D. Wise’s version of Rips’s construction is hereditarily conjugacy separable. We then use this construction to produce firs...
full textOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
full textnon-nilpotent groups with three conjugacy classes of non-normal subgroups
for a finite group $g$ let $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$. the aim of this paper is to classify all the non-nilpotent groups with $nu(g)=3$.
full textMy Resources
Journal title
volume 41 issue 6
pages 1493- 1495
publication date 2015-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023